Monday, 12 May 2008

Slowness, at enormous speed

Slowness, at enormous speed -

Slowness, at enormous speed -
war against inaccurate darkness,

to bring this amazing thing to light,
good hands. Orphaned from life -

isolated script, deducible chemistry;
the dissection of beauty, expression

shaking hands with shifting skeleton,
which is silver; shining - promising

Earth and all her creatures -
new unity and understanding.

From the circus-masters, our animal
preserved, free - from taxidermists -

scrap-merchants, white-coated vultures,
we have cradled our mighty monument;

dream, hope, idea, thought, action,
discussion, argument, race, draft -

trumpets, labour, refinement;
completion, more refinement…

chromosome by chromosome now,
the Genome will not stop yielding.

‘Even more detailed annotations and analyses have already been published for chromosomes 5, 6, 7, 9, 10, 13, 14, 19, 20, 21, 22 and Y. Publications describing the remaining 12 chromosomes are forthcoming.’ Wellcome Trust Sanger Institute, 2004

‘Biological research increasingly depends on 'finished' genome sequences. Deducing what is absent from these sequences is not trivial. More than 99% of the euchromatic portion of the human genome is now represented as a high-quality finished sequence with each base ordered and oriented. However, two principal types of gap remain: heterochromatic (estimated to be 200 Mb) and euchromatic (23.0 Mb) gaps. Here, we use various global sources of data to help understand the nature of the gaps in the finished human genome. Not all gaps are recalcitrant to subcloning, nor are most heterochromatic. The presence of recent segmental duplications is the most important predictor of gap location in euchromatic sequences. The resolution of these regions remains an important challenge for the completion of the human genome, gene annotation and SNP assignment.’ An assessment of the sequence gaps: Unfinished business in a finished human genome, Nature, 2004

‘Dr Francis Collins, the scientist leading the Human Genome Project, says he expects important new gene sequences governing aspects of personality, such as intelligence and behaviour, to be known very shortly. While the project to crack our DNA code has been targeted at understanding and eradicating disease, Dr Collins believes the project will provide significant insights into a broad range of heritable aspects. "We haven't discovered most of those yet, but frankly, we should be prepared for an avalanche of that kind of information coming in the next two or three years," he told the BBC World Service's The Interview programme. "On top of the Human Genome Project, which laid out the letters of the code in a 'reference DNA sequence' way, we now have a very good encyclopaedia of the variable parts. "Researchers are using those in very powerful ways, to track down the specific genes involved in very complicated things - including intelligence," said the director of the US National Human Genome Research Institute. Dr Collins stressed that understanding the genes governing behaviour was not the main focus of the Human Genome Project. Instead, it remains firmly focussed on identifying the faulty genes responsible for disease, such as diabetes, heart disease, and cancer.’ BBC, 2006

No comments: